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Self-avoiding walks and connective constants in small-world networks
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Long-distance characteristics of small-world networks have been studied by means of self-avoiding walks
(SAW’s). We consider networks generated by rewiring links in one- and two-dimensional regular lattices. The
number of SAW’su, was obtained from numerical simulations as a function of the number of stepshe
considered networks. The so-called connective cons};aﬁﬂ,imn_mun/un,l, which characterizes the long-
distance behavior of the walks, increases continuously with disorder str@rgtewiring probabilityp). For
smallp, one has a linear relation= uqy+ap, po anda being constants dependent on the underlying lattice.
Close top=1 one finds the behavior expected for random graphs. An analytical approach is given to account
for the results derived from numerical simulations. Both methods yield results agreeing with each other for
smallp, and differ forp close to 1, because of the different connectivity distributions resulting in both cases.
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I. INTRODUCTION [17-19. Site and bond percolatiofil6,2( as well as the
Ising[21-23 and XY models[24] have been also studied in
Our world is formed by networks of different typéso-  these networks. Most of the published work on small worlds
cial, biological, technological, economjovhose character- has focused on networks obtained from one-dimensional lat-
ization has launched in the past years the emergence of motiees(rings). Small-world networks built by rewiring lattices
els incorporating the basic ingredients of real-life networksof higher dimensions have been employed to study percola-
[1-3]. In particular, social networks form the substrate wheretion, as a model of disease propagatiaf,25. Several char-
processes such as information spreading or disease propageteristics of random walks on this kind of networks have
tion take place. One expects that the structure of these conlpeen analyzed in connection with diffusion processes
plex networks will play an important role in such dynamical [26,27). In particular, some properties of these walks, such as
processes, which are usually studied by means of stochastice probability of returning to the origin, were found to be
dynamics and random walks. Some processes, such as nairitermediate between those corresponding to fractals and
gation and exploratory behavior are neither purely randonCayley treeg28].
nor totally deterministic, and can be also described by walks In this paper, we study self-avoiding walks in small-world
on graphdg4]. In this context, the generic properties of de- networks built up from one- and two-dimensional regular
terministic navigation5] and directed self-avoiding walks lattices. A self-avoiding walKSAW) is defined as a walk
[6] in random networks have been analyzed recently. along the bonds of a given network which can never intersect
In the past years, networks displaying the “small-world” itself. The walk is restricted to moving to a nearest-neighbor
effect have been intensively studift-11]. Watts and Stro- site during each step, and the self-avoiding condition con-
gatz[7,12] proposed for this kind of networks a model basedstrains the walk to occupy only sites which have not been
on a locally connected regular lattice, in which a fractioof ~ previously visited in the same wa[R9]. SAW'’s have been
the links between nearest-neighbor sites are replaced by newged for modeling the large-scale properties of long-flexible
random connections, thus creating long-range “shortcuts.’'macromolecules in solutiof80], as well as for the study of
Hence, one has in the same network a local neighborfe®d polymers trapped in porous media, gel electrophoresis, and
for regular lattices and some global properties of random size exclusion chromatography, which deal with the transport
graphs[13]. The small-world effect is usually measured by of polymers through membranes with small poi&$|. They
the scaling behavior of the characteristic path lengtlde-  have also been employed to characterize complex crystal
fined as the average of the distance between any two sites. #tructureq 32] and to analyze critical phenomena in lattice
small-world networks, one has a logarithmic increasef of models[29,33. Universal constants for SAW’s have been
with the network size, as happens for random graphsliscussed by Privmaet al. [34].
[2,13,14. The paper is organized as follows. In Sec. ll, we give
This short global length scale changes strongly the behavsome basic definitions and concepts related to SAW’s. In
ior of statistical physical problems on small-world networks, Sec. Ill, we present results for SAW’s on simulated small-
as compared with regular latticéshere one has~NY, N world networks, and in Sec. IV, we give an approximate
being the system size antlthe lattice dimension Among  analytical procedure to calculate the number of SAW’s on
these problems, one finds signal propagafidh spread of this kind of networks. The paper closes with some conclu-
infections [15,16], and random spreading of information sions in Sec. V.
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Il. BASIC DEFINITIONS Then, the average number of two-step SAW'’s is given by

For regular lattices, the number, of different SAW'’s g
starting from a generic site has an asymptotic dependence for uf'=z > (m—1)Qq(m), %)
largen [34,35: m>1

U ~n?Lyn, 1) and we findu’zdzzz. Using the same procedure far>2,
one has

where y is a critical exponent which depends on the lattice

dimension, andgu is the so-called “connective constant” or

effective coordination number of the considered latticeand thus for(large random networks one finda=z. In

[35,36. In general, for a lattice with coordination numier  connection with this, we note that for a Bethe lattice

connectivity z, one hasu<z—1. This parameter. can be  Cayley tre¢ with connectivityz, the number of SAW's is

urd=2z", (6)

obtained from Eq(1) by the limit given byuB'=z(z—1)""*, and one hag.=z—1 (see, e.g.,
Ref.[42)).
w=lim——. )
n—ooUn-1 I1l. NUMERICAL SIMULATIONS

The connective constant depends upon the particular topol- The networks studied here have been generated from
ogy of each lattice, and has been determined very accuratewree different regular lattices: 1D ring with coordination

for two-dimensional(2D) and three-dimensionaBBD) lat-  Numberz=4 and 6, and 2D square lattice<4). To con-
tices[37,38. In the following, we will consider Eq(2) as a struct our small-world networks, we consider in turn each of

definition of the connective constapt for any network. the bonds in the starting lattice and substitute it with a given
Note that the limit in Eq(2) is well defined provided that the Probability p by a new bond. This means that one end of the
mean connectivity is finite(Rigorous results on this question 20nd (chosen at randojnis changed to a new node taken

are given in Ref[39].) Padeapproximants and differential andomly from the entire network. We impose three condi-
approximants/40,41 as well as Monte Carlo simulations tions: (1) no two nodes can have more than one bond con-

[37] are alternative numerical methods to obtain asymptoti(f"aCting them,(Z) no ”Pde can be qonnected by a link to
properties of self-avoiding walks. itself, and(3) isolated sitegwith zero linkg are not allowed.

For random and small-world networks, the number of This method keeps constant the total number of links in the
SAW's of lengthn depends on the considered starting nodg€Wired networksand consequently the average connectivity
of the network. In the sequel, we will call, the average Z). The total number of reW|r.ed links iszpN on average. .
number of SAW's of length, i.e., the mean value obtained  FOr networks generated in the present way, there is a

; -1
(for eachn) by averaging over the network sites. For small- Cr0SSover siz&l* ~p =~ that separates the large- and small-
world networks, one expecs values larger than that corre- World regimeg 43,44, and the small-world behavior appears

sponding to the starting regular lattice. In particularjs  [oF any finite value op (0<p<1) as soon as the network is

expected to increase with and approach the value corre- 12rg€ enough. Our networks included<10° sites in one
sponding to random lattices with mean connectivitgs p dimension and 308 300 sites for the 2D system, so that we

were in the small-world regimésystem sizeN>N*). In the

For regular lattices, all nodes have the same connectivit2€duel, we will calll the side length of the considered lat-

i.e., the same number of nearest neighbors. Howeverp for tIC€S: i.e.,L =N Periodic boundary conditions were as-
>0 different connectivitiesn are possible, giving rise to a sumed. We note that our networks differ from those dis-

probability distribution for which analytic expressions have cUssed by Watts and Strogdf?] in that these authors left

been found19,21. For a(large random network with mean untouchedz/2 links per site. For our simulated small-world

connectivityz, the connectivity distributiorP,q(m) follows ~ Networks, we have obtained the average numbgrof
a Poisson law2,13]: SAW'’s up ton=21. Sinceu, increases witlp, this maxi-

mumn was reduced to= 14 close tqp=1, in order to carry
sMa—2 out averages over nodes of the generated networks. These
(3)  numbers of steps in the SAW’s are sufficient to obtain the
connective constant with enough accuracy for our present

For random networks, the connective constant can be oRUrPOSES. In fact, the larger s the faster the ratio, /u,—;

tained in a straightforward manner, due to the absence donverges witm. .
correlations between links. Far=1, one has obviously First of all, we calculate the mean-squared end-to-end dis-

d_ ) . : . tance of the walks on our small-world networks:
u; =z. Now, given a generic node and a link going out from
it, the connectivity distributiorQ,4(m) for the other end of R2=<(rn—r0)2>, @
the link in a random graph is given by "

—1.

Prg(m)=

m!

where( ) indicates an average ovarstep SAW'’s with dif-
- m ferent starting sites and for different network realizations
Qra(M)= 7 Pra(m). @ with given p. Here,r,, refers to the position of sita in the
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FIG. 1. Mean-squared end-to-end distarR® for SAW’s on
small-world networks generated from a 1D regular lattice vhith FIG. 2. Linear-log plot of the average number of self-avoiding
=10 sites and connectivity=4. We present values f(Rﬁ, nor- walks u, on small-world networks generated from 1D rings with
malized by the squared system length as a function of the num-  connectivityz=4. We plotu, as a function of the path lengthfor
ber of steps. Different symbols correspond to several values of theseveral rewiring probabilitiep, as derived from numerical simula-
rewiring probab|||typ From top to bottomp:O.Z, 0.1, 0.05, 0.02, tions. From top to bOttOITp:l, 0.3, 0.1, 0.03, and 0. Dotted lines
and 0.01. A dotted line indicates the valR§/L?=1/12 correspond- ~ are guides to the eye.
ing to p=1. Dashed lines are guides to the eye.

numberz=4. We have plotted results for several rewiring

d-dimensional Euclidean space of the underlying regular latprobabilitiesp, from p=0 (regular lattice, squargso p=1
tice, andr is the position of the origin for the considered (black diamonds As expectedy, increases ag is raised,
walk. For SAW’s on the 1D lattices considered here, one hasince introducing long-range connections in the starting lat-
R2~bn?, whereas for the 2D square lattid®2~bn®?  tice opens new ways for the SAW'’s. In particular, such long-
[29,35,49, with a lattice-dependent constamtof the order range links allow the walks to visit regions far away from the
of unity in all cases. origin for smalln, and thus avoid the constriction associated

In Fig. 1, we present the ratiﬁ/L2 as a function of the to move close to the starting site, which limits the number of
number of steps for SAW’s on 1D small-world networks possible self-avoiding walks. In the logarithmic plot of Fig.
with z=4, for several values of the rewiring probabiliy ~ 2, one sees that log(/u,_,) converges rather fast to a con-
R? increases witth much faster than for the corresponding stant for each rewiring probabilitp, which allows us to
regular lattice due to the random connections introduced bgalculate the corresponding connective constant. Also, from

the rewiring of links.(Note that for a regular lattice with ~ the results shown in Fig. 2 we find that for langethe ratio
=10°, we have fom=20 a ratioR%/L2~10"".) In fact, if ~ between the number of SAW's far=1 andp=0 increases

we call f, the fraction ofn-step paths that include at least @sk" with a constank=1.67. This means that at long dis-

one rewired link, we have tances, for each link available for SAW'’s in the regular lat-
tice, we have on average 1.67 connectionsgderl. This
R2~b(1-f,)n?+4f dL2 (8  number is, in fact, the ratio between connective constants for

p=1 andp=0 in the casal=1, z=4.

The first and second terms on the right-hand side come from The connective constant has been obtained for our
SAW’s without and with rewired links, respectively. The sec- simulated networks by finding the largelimit of the ratio
ond term amounts, apart from fractid, to the average u,/u,_,. In Fig. 3, we present the resulting as a function
Euclidean distance between any pair of sites in aof the rewiring probabilityp for our networks generated from
d-dimensional box with side length. Thus, in the limit of 1D and 2D lattices. One observes thatthanges fast close
large networksgas those considered here, witk-n) one has  to p=0, and the derivativelu/dp decreases gs s raised.
R2~f,dL?/12. In the course of our numerical simulations, The largest change gf in the whole region betweep=0
we have checked E@8) by calculating independenltiy, and  and 1 is found for the networks with=6. In fact, we find in
R, as a function oh. We found that both sides of this equa- this case an increase p of 2.13 to be compared with 1.48
tion coincide within error bargwhich are smaller than the and 1.07 in 1D and 2D rewired networks witk 4.
symbol size in Fig. 1 Then, Rﬁ can be considered as a  Forp=1, our numerical procedure gives in all cases con-
measure of the fraction of SAW'’s containing rewired links, nective constantg clearly lower than the mean connectivity
and converges tdL?/12 for largen in the rewired networks z In fact, we foundu=3.69, 5.73, and 3.70%0.01) for
(fp—1). networks rewired from 1D lattices with = 4 and 6, and

We now turn to the numbeu,, of SAW’s on these net- from a 2D lattice g=4), respectively. The obtained values
works. In Fig. 2, we show,, as a function of the walk length for networks withz=4 coincide within error bars, irrespec-
for networks built up from a 1D lattice with coordination tive of the starting 1D or 2D lattice, indicating that for
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FIG. 4. Dependence upon the rewiring probabilgyof the
FIG. 3. Connective constani as a function of the rewiring change in connective constamtu= u— uo, With respect to the
probability p. Different symbols represent results obtained for corresponding regular lattices. Symbols represent the same net-
small-world networks generated from 1D regular lattices with con-works as in Fig. 3. Dashed lines were obtained from analytical
nectivitiesz=4 (squaresandz=6 (circles, as well as from a 2D  calculations by using Eq13).
square latticédiamonds$. Dotted lines are guides to the eye. Error
bars are less than the symbol size. Resultgdabtained by means  ya|ated to the scaling of the characteristic length scale of

of the analytical method described in Sec. IV are plotted as daShegmaII-World networks, namely, the average distance between

lines. the ends of shortcuts, given by &= (pz) =14 [20].
=1 the resulting rewired networks lost memory of the start-
ing regular lattice. However, the values obtained for simu- IV. ANALYTICAL APPROXIMATION

lated networks withp=1 contrast with those expected for
random networks, which coincide in each case with the av- We now derive an approximate analytical expression that
erage connectivityz, as explained above. This occurs be- allows us to calculate, in a small-world network, assuming
cause our networks with=1 are not trug¢Poissonianran-  the sequencéuﬂ} for the underlying regular lattice to be
dom networks, since they still keep memory of the startingknown [37,38. For a given path lengtim, we obtain the
regular latticeg19]. This memory effect is mainly due to the mean number of SAW's1,, by considering all possible se-
fact that one rewires only one end of each link, maintainingguences of unrewired and rewired links in small-world net-
the other end on its original site. Hence, the connectivityworks. With this purpose, we calculate the probability of
distribution found for our rewired networks with=1 does reaching a rewired link as a function of the walk length. In
not coincide with that given above in E(). Such a differ-  particular, we will obtain the conditional probability that the
ence with Poissonian random networks should be even stroith link in a SAW is a rewired one, assuming that link 1 is
ger for small-world networks generated in a way similar toan unrewired onei¢1).
ours, but leaving untouched2 links per site, as those stud- ~ We first note that in a regular lattice, the ratig
ied in earlier workdg7,21]. =u?/u?_, obviously depends on This ratioc; measures the

To analyze the change of as a function op for a given  average number of available links starting from the {)th
underlying lattice, we call u=u— g, wo being the con-  site in a generic SAW on the underlying regular lattice, and
nective constant of the corresponding regular lattice. In Figallows us to calculate the number of possible unrewired links
4, we show the obtained dependenceAgf uponp for the  in a SAW on a rewired network. Taking into account that the
considered 1D and 2D networks in a log-log plot. In all threefraction of unrewired connections in the whole rewired net-
cases, we find thadu can be fitted well by a power law work is 1—p, the mean numbeq; of available unrewired
Ap~p® for p=<0.01. For 1D networks, exponeais found links going out from sité — 1 in a SAW isg;=c;(1—p). On
to be 0.98-0.03 (for z=4) and 0.99-0.03 (for z=6). For  the other hand, the mean number of rewired links going out
2D networks, we founad=0.99+0.03. Thus, our results in- from an arbitrary node reached by an unrewired link is given
dicate a linear dependenge= g+ ap for smallp, irrespec- by (see the Appendix
tive of the underlying lattice.

Therefore, the functional form for thp dependence of
Ap close top=0 does not depend on the dimension of the
starting regular lattice. This constrasts with other properties
of small-world networks, which have been found to changegContrary toq;, the mean numbew; is independent of.)
aspYd, d being the dimension of the underlying lattice. This Therefore, the conditional probability that liik>1) is a
happens, for example, for the average number of nodes irewired one, assuming that link-1 is an unrewired one, is
“shell” n, which scales ap [19]. Such a dependence is given by

w;=p(z—3). C)
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0.16 - - T Note that the above equations, although rather accurate,
ID, z=4 are not exact. There are two reasons for this: First, each ratio

- 0-0-E-0-8-0-0-0-0 ¢c; is an average number of allowed links starting from a site

57 guero0nOneerenere reached iri — 1 steps, but the actual number of such allowed
AR A ID, z=6 4 links depends on the particular site under consideration. Sec-

ond, finite-size effects should appear, unless the considered
networks are large enough.
'.9_,o,.o.0‘»-«°~<>-°'°‘°‘°'°"" Values of connective constanjs derived fromu, ob-
> 2D . tained with this procedure are presented in Figs. 3 and 4 as a
function of the rewiring probabilityp (dashed lines There
p=0.1 appears to be good agreement withderived from numeri-
cal simulations(symbols for p<0.2. For largep, the con-
010l s . L nective constants deduced from the analytical method are
0 5 10 52 larger than those yielded by the simulatiofor z=6 there
n is a region aroungp=0.3 where the analytical results are
slightly lower than those found for the simulated networks.
Forp=1 our analytical procedure gives=z, as for ran-
dom networks. On the other hand, our numerical simulations
for small-world networks gave in all cases in the linpit

FIG. 5. Conditional probabilityTn that thenth step in a SAW be
a rewired link, assuming that link—1 is an unrewired one, as
derived forp=0.1 from the analytical procedure described in the

text. En is presented as a function of stepfor small-world net- 1 fi t learlv | than th
works built up from 1D rings withz=4 (squares and z=6 =1 connective constanjs clearly lower than the mean con-

(circles, as well as from a 2D square latti¢diamonds. Dotted n_eCt'V'ty z as indicated above and shown in Fig. 3. This
lines are guides to the eye. difference between both procedures is due to the above-
mentioned fact that simulated networks wip=1 do not
, have a Poissonian connectivity distribution, which is implic-
o= Wi _ zp ’ (10  itly assumed in the analytical method for this valuepofs
Witdi  z'p+ci(1l—p) a matter of fact, in this case we haye=0 for i>0, B;
=0 fori>1, andB;=z2, giving in Eq.(13) u,=2", as for
with z' =z—1/2. Fori=1, we takep,=p. This probability ~random networkgsee Eq.(6)]. In this sense, our analytical

D is shown in Fig. 5 for the three types of networks Consid__procedure to calculate the number of SAW's gives a better

ered here, for a rewiring probabiliy=0.1 interpolation between regular lattices and random graphs.

Thus, the average number bitep SAW's that do not In the context of this analytical approach, it is natural to
include ,rewired connections is expect close tp=0 a linear dependence of the connective

constantu on p, as found from our numerical simulations
(see Sec. ll), irrespective of the underlying lattice. By ex-
panding the probabilityp; [Eq. (10)] to first order inp, one
and the number of those consistingioef1 unrewired links ~ finds fori>1: pi=2'pl/c;+0O(p?). Introducing this expres-

and a rewired one in stapis sion forp; into Egs.(11)—(13), and keeping terms up to first
order inp, we find

A=(1-py)---(1—p)u?, (11)

Bi=(1—py)---(1—p;_y)piu’. (12)

n
Now we note that a rewired connection in sieip a (large Un:izo BiAn-i  (P<1), (14
small-world network ends on a random site of the network

(most probably far away from the sites already visited in thevvith the corresponding linearized expressions Ryr and

;?g;)ig;’;%;h:;i?j;?:ntzia:;i'lgrsttg'?; ;t, fgzﬁ dbﬁ]g;rlzpn;ost A,_i. This expression includes contributions of SAW’s con-
. Lo © o taini termA,, fori=0 d ired linkgall
Finally, the average number ofstep SAW’s is given by aining zero(term A, for i=0) and one rewired linksa

other termsj=1, ... n). In this way, close tg=0 we find

for the derivativedu/dp the values 7.6d=1,z=4), 14.3
Up= 2 B;Bi.---B; A, (13) (d=1,z=6), and 6.3 i=2). Thus, it is clear that the func-
gt Hip=n 2 =t tional dependence oft uponp for p<1 does not change

. ) o with the dimension of the underlying lattice.
where the sum is extended to all possible combinations of

indicesiy, . .. ji; with sum equal tay, including null indices,
for which we haveBy=Ay,=1. Each term in Eq(13) repre-
sents a sequence of unrewired and rewired links, and thus the Self-avoiding walks provide us with an adequate tool to

sum includes 2terms. The SAW'’s corresponding to the gen- study the long-range characteristics of small-world networks.
eral term in the sum includie- 1 rewired links(in step num-  For large networks, the number of SAW's increases asymp-
ber iq,i;+is,ig+---+ij_1). As an example, Eq(13) totically asu,~ ", provided that one considers system sizes
gives, forn=2, u,=B,+ B+ BA; +A,. L>n. For small-world networks generated from a given lat-

V. CONCLUSIONS
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tice, the effective connectivity ranges from the value of the (3) New (rewired links arriving at siteX. The distribution
regular lattice touw=2z for random graphs. For small this  of the number of these connections {$or large system size
effective connectivity follows a linear relation= uq+ap, N)
a being a constant dependent on the underlying lattice.

We have developed an analytical procedure to obtain the 1
number of SAW'’s in small-world networks. This method is Ps(v)= —(tz)’e 7, v=0, (A3)
based on calculating probabilities of finding rewired or un- v!
rewired links in the walks, and gives results in good agree-
ment with numerical simulations fqu=0.2. The results of wjth t=p/2.
both methods differ for largep, since they assume in prac-  Thus, given a site with unrewired connections, the num-
tice different connectivity distributions. Our analytical ber of rewired links isx=s+uv, wheres depends om andv

method gives in this respect a correct interpolation betweeps independent of. The probability distribution fox is
regular lattices and random graphs. On the contrary, the re-

wiring (simulated process gives rise to non-Poissonian con-
nectivity distributions, even for a rewiring probability
=1, yielding in this case networks with connective constants
u lower than the average connectivity

Both analytical calculations and simulations similar to
those presented here can be useful to characterize other kin
of networks of current interest, such as scale-free networks,

Smax

QY (x)= SZO P,(s)P3(x—s), (A%)

Wgh Smax= Min(z—r,x). Then, we have

whose properties are known to depend on the asymptotic 1\z7r  Smax [z—y 1
form of the connectivity distribution for large connectivities. QY (x) = 5) e*Z‘EO S O(_—S)'(IZ)H-
S= H
(A5)
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APPENDIX: DERIVATION OF CONDITIONAL z o
PROBABILITIES Qout(X)= 21 Qin(r)Q3’(x), (A6)
r:

Here we calculate a conditional probability related to the
number of possible connections starting from a generic nod , : . : :
in a SAW, and necessary to derive EE) in our analytical ﬁ/:reer\zi?e,ra(?i)mz:the probability of reaching a node having
approach in Sec. IV. In particular, we will obtain the average
number of possible rewired links going out from a generic
node X (so called for definitenegsassuming that this node r{z R
was reached in a SAW through an unrewired link in step Qin(r)=5| JA=p)"p " (A7)
Here we mean by possible links all those connections that
are available for step+1 in a SAW (leading to nodes not o o
previously visited in the same walk [Qin(r) is given, apart from a normalization constant, by the
In a rewired network, the links with one end on node ProductrPy(r).] _ o
can be classified for our present purpose into three types. ~ Finally, the mean number of outgoing rewired linfczl-
(1) Links which were not rewired and remain as in the culated with the probability distributio®,,¢(x)] is
original lattice. The probability distribution for the numbrer
of these connections is given by

<x>=gl XQoui(X). (A8)

z
Pl(r)=<r)(1—p)rp“, r=0,...z. (Al)
Introducing expression(A6) into Eqg. (A8), and after a

(2) Rewired links for which the reference nodlevas not straightforward but somewhat lengthy algebra, one finds the

changed. Following the above notation, there arer re- mean value
wired links, from whichs keeps one end on sit&. The
probability distribution fors is (X)=p(z—3). (A9)
Z=r| (17 This avera i i i
_ - _ _ ge valuéx) is calledw; in the main text, and the
Pa(s) ( s )(2) o 550z (A2) last result is Eq(9) there.
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