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Self-avoiding walks and connective constants in small-world networks
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Long-distance characteristics of small-world networks have been studied by means of self-avoiding walks
~SAW’s!. We consider networks generated by rewiring links in one- and two-dimensional regular lattices. The
number of SAW’sun was obtained from numerical simulations as a function of the number of stepsn on the
considered networks. The so-called connective constant,m5 lim

n→`
un /un21, which characterizes the long-

distance behavior of the walks, increases continuously with disorder strength~or rewiring probabilityp). For
small p, one has a linear relationm5m01ap, m0 anda being constants dependent on the underlying lattice.
Close top51 one finds the behavior expected for random graphs. An analytical approach is given to account
for the results derived from numerical simulations. Both methods yield results agreeing with each other for
small p, and differ forp close to 1, because of the different connectivity distributions resulting in both cases.
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I. INTRODUCTION

Our world is formed by networks of different types~so-
cial, biological, technological, economic!, whose character
ization has launched in the past years the emergence of m
els incorporating the basic ingredients of real-life netwo
@1–3#. In particular, social networks form the substrate wh
processes such as information spreading or disease prop
tion take place. One expects that the structure of these c
plex networks will play an important role in such dynamic
processes, which are usually studied by means of stoch
dynamics and random walks. Some processes, such as
gation and exploratory behavior are neither purely rand
nor totally deterministic, and can be also described by wa
on graphs@4#. In this context, the generic properties of d
terministic navigation@5# and directed self-avoiding walk
@6# in random networks have been analyzed recently.

In the past years, networks displaying the ‘‘small-worl
effect have been intensively studied@7–11#. Watts and Stro-
gatz@7,12# proposed for this kind of networks a model bas
on a locally connected regular lattice, in which a fractionp of
the links between nearest-neighbor sites are replaced by
random connections, thus creating long-range ‘‘shortcu
Hence, one has in the same network a local neighborhood~as
for regular lattices! and some global properties of rando
graphs@13#. The small-world effect is usually measured b
the scaling behavior of the characteristic path length,, de-
fined as the average of the distance between any two site
small-world networks, one has a logarithmic increase o,
with the network size, as happens for random gra
@2,13,14#.

This short global length scale changes strongly the beh
ior of statistical physical problems on small-world network
as compared with regular lattices~where one has,;N1/d, N
being the system size andd the lattice dimension!. Among
these problems, one finds signal propagation@7#, spread of
infections @15,16#, and random spreading of informatio
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@17–19#. Site and bond percolation@16,20# as well as the
Ising @21–23# andXY models@24# have been also studied i
these networks. Most of the published work on small wor
has focused on networks obtained from one-dimensional
tices~rings!. Small-world networks built by rewiring lattices
of higher dimensions have been employed to study perc
tion, as a model of disease propagation@20,25#. Several char-
acteristics of random walks on this kind of networks ha
been analyzed in connection with diffusion process
@26,27#. In particular, some properties of these walks, such
the probability of returning to the origin, were found to b
intermediate between those corresponding to fractals
Cayley trees@28#.

In this paper, we study self-avoiding walks in small-wor
networks built up from one- and two-dimensional regu
lattices. A self-avoiding walk~SAW! is defined as a walk
along the bonds of a given network which can never inters
itself. The walk is restricted to moving to a nearest-neighb
site during each step, and the self-avoiding condition c
strains the walk to occupy only sites which have not be
previously visited in the same walk@29#. SAW’s have been
used for modeling the large-scale properties of long-flexi
macromolecules in solution@30#, as well as for the study o
polymers trapped in porous media, gel electrophoresis,
size exclusion chromatography, which deal with the transp
of polymers through membranes with small pores@31#. They
have also been employed to characterize complex cry
structures@32# and to analyze critical phenomena in lattic
models @29,33#. Universal constants for SAW’s have bee
discussed by Privmanet al. @34#.

The paper is organized as follows. In Sec. II, we gi
some basic definitions and concepts related to SAW’s.
Sec. III, we present results for SAW’s on simulated sma
world networks, and in Sec. IV, we give an approxima
analytical procedure to calculate the number of SAW’s
this kind of networks. The paper closes with some conc
sions in Sec. V.
©2003 The American Physical Society06-1
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II. BASIC DEFINITIONS

For regular lattices, the numberun of different SAW’s
starting from a generic site has an asymptotic dependenc
largen @34,35#:

un;ng21mn, ~1!

whereg is a critical exponent which depends on the latt
dimension, andm is the so-called ‘‘connective constant’’ o
effective coordination number of the considered latt
@35,36#. In general, for a lattice with coordination number~or
connectivity! z, one hasm<z21. This parameterm can be
obtained from Eq.~1! by the limit

m5 lim
n→`

un

un21
. ~2!

The connective constant depends upon the particular to
ogy of each lattice, and has been determined very accura
for two-dimensional~2D! and three-dimensional~3D! lat-
tices@37,38#. In the following, we will consider Eq.~2! as a
definition of the connective constantm for any network.
Note that the limit in Eq.~2! is well defined provided that the
mean connectivity is finite.~Rigorous results on this questio
are given in Ref.@39#.! Padéapproximants and differentia
approximants@40,41# as well as Monte Carlo simulation
@37# are alternative numerical methods to obtain asympt
properties of self-avoiding walks.

For random and small-world networks, the number
SAW’s of lengthn depends on the considered starting no
of the network. In the sequel, we will callun the average
number of SAW’s of lengthn, i.e., the mean value obtaine
~for eachn) by averaging over the network sites. For sma
world networks, one expectsm values larger than that corre
sponding to the starting regular lattice. In particular,m is
expected to increase withp and approach the value corre
sponding to random lattices with mean connectivityz as p
→1.

For regular lattices, all nodes have the same connecti
i.e., the same number of nearest neighbors. However, fop
.0 different connectivitiesm are possible, giving rise to a
probability distribution for which analytic expressions ha
been found@19,21#. For a~large! random network with mean
connectivityz, the connectivity distributionPrd(m) follows
a Poisson law@2,13#:

Prd~m!5
zme2z

m!
. ~3!

For random networks, the connective constant can be
tained in a straightforward manner, due to the absence
correlations between links. Forn51, one has obviously
u1

rd5z. Now, given a generic node and a link going out fro
it, the connectivity distributionQrd(m) for the other end of
the link in a random graph is given by

Qrd~m!5
m

z
Prd~m!. ~4!
02610
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Then, the average number of two-step SAW’s is given by

u2
rd5z(

m.1
~m21!Qrd~m!, ~5!

and we findu2
rd5z2. Using the same procedure forn.2,

one has

un
rd5zn, ~6!

and thus for~large! random networks one findsm5z. In
connection with this, we note that for a Bethe lattice~or
Cayley tree! with connectivity z, the number of SAW’s is
given byun

BL5z(z21)n21, and one hasm5z21 ~see, e.g.,
Ref. @42#!.

III. NUMERICAL SIMULATIONS

The networks studied here have been generated f
three different regular lattices: 1D ring with coordinatio
numberz54 and 6, and 2D square lattice (z54). To con-
struct our small-world networks, we consider in turn each
the bonds in the starting lattice and substitute it with a giv
probabilityp by a new bond. This means that one end of t
bond ~chosen at random! is changed to a new node take
randomly from the entire network. We impose three con
tions: ~1! no two nodes can have more than one bond c
necting them,~2! no node can be connected by a link
itself, and~3! isolated sites~with zero links! are not allowed.
This method keeps constant the total number of links in
rewired networks~and consequently the average connectiv
z). The total number of rewired links is12 zpN on average.

For networks generated in the present way, there i
crossover sizeN* ;p21 that separates the large- and sma
world regimes@43,44#, and the small-world behavior appea
for any finite value ofp (0,p,1) as soon as the network i
large enough. Our networks included 13105 sites in one
dimension and 3003300 sites for the 2D system, so that w
were in the small-world regime~system sizeN.N* ). In the
sequel, we will callL the side length of the considered la
tices, i.e.,L5N1/d. Periodic boundary conditions were a
sumed. We note that our networks differ from those d
cussed by Watts and Strogatz@7# in that these authors lef
untouchedz/2 links per site. For our simulated small-worl
networks, we have obtained the average numberun of
SAW’s up to n521. Sinceun increases withp, this maxi-
mumn was reduced ton514 close top51, in order to carry
out averages over nodes of the generated networks. T
numbers of steps in the SAW’s are sufficient to obtain
connective constantm with enough accuracy for our prese
purposes. In fact, the larger isp, the faster the ratioun /un21
converges withn.

First of all, we calculate the mean-squared end-to-end
tance of the walks on our small-world networks:

Rn
25^~rn2r0!2&, ~7!

where^ & indicates an average overn-step SAW’s with dif-
ferent starting sites and for different network realizatio
with given p. Here,rn refers to the position of siten in the
6-2
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d-dimensional Euclidean space of the underlying regular
tice, andr0 is the position of the origin for the considere
walk. For SAW’s on the 1D lattices considered here, one
Rn

2;bn2, whereas for the 2D square latticeRn
2;bn3/2

@29,35,45#, with a lattice-dependent constantb of the order
of unity in all cases.

In Fig. 1, we present the ratioRn
2/L2 as a function of the

number of stepsn for SAW’s on 1D small-world networks
with z54, for several values of the rewiring probabilityp.
Rn

2 increases withn much faster than for the correspondin
regular lattice due to the random connections introduced
the rewiring of links.~Note that for a regular lattice withL
5105, we have forn520 a ratioRn

2/L2;1027.! In fact, if
we call f n the fraction ofn-step paths that include at lea
one rewired link, we have

Rn
2'b~12 f n!n21 1

12 f ndL2. ~8!

The first and second terms on the right-hand side come f
SAW’s without and with rewired links, respectively. The se
ond term amounts, apart from fractionf n , to the average
Euclidean distance between any pair of sites in
d-dimensional box with side lengthL. Thus, in the limit of
large networks~as those considered here, withL@n) one has
Rn

2' f ndL2/12. In the course of our numerical simulation
we have checked Eq.~8! by calculating independenltyf n and
Rn as a function ofn. We found that both sides of this equ
tion coincide within error bars~which are smaller than the
symbol size in Fig. 1!. Then, Rn

2 can be considered as
measure of the fraction of SAW’s containing rewired link
and converges todL2/12 for largen in the rewired networks
( f n→1).

We now turn to the numberun of SAW’s on these net-
works. In Fig. 2, we showun as a function of the walk length
for networks built up from a 1D lattice with coordinatio

FIG. 1. Mean-squared end-to-end distanceRn
2 for SAW’s on

small-world networks generated from a 1D regular lattice withN
5105 sites and connectivityz54. We present values forRn

2 , nor-
malized by the squared system lengthL2, as a function of the num-
ber of stepsn. Different symbols correspond to several values of
rewiring probabilityp. From top to bottom:p50.2, 0.1, 0.05, 0.02,
and 0.01. A dotted line indicates the valueRn

2/L251/12 correspond-
ing to p51. Dashed lines are guides to the eye.
02610
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numberz54. We have plotted results for several rewirin
probabilitiesp, from p50 ~regular lattice, squares! to p51
~black diamonds!. As expected,un increases asp is raised,
since introducing long-range connections in the starting
tice opens new ways for the SAW’s. In particular, such lon
range links allow the walks to visit regions far away from t
origin for smalln, and thus avoid the constriction associat
to move close to the starting site, which limits the number
possible self-avoiding walks. In the logarithmic plot of Fi
2, one sees that log(un /un21) converges rather fast to a con
stant for each rewiring probabilityp, which allows us to
calculate the corresponding connective constant. Also, fr
the results shown in Fig. 2 we find that for largen, the ratio
between the number of SAW’s forp51 andp50 increases
askn with a constantk51.67. This means that at long dis
tances, for each link available for SAW’s in the regular la
tice, we have on average 1.67 connections forp51. This
number is, in fact, the ratio between connective constants
p51 andp50 in the cased51, z54.

The connective constantm has been obtained for ou
simulated networks by finding the large-n limit of the ratio
un /un21. In Fig. 3, we present the resultingm as a function
of the rewiring probabilityp for our networks generated from
1D and 2D lattices. One observes thatm changes fast close
to p50, and the derivativedm/dp decreases asp is raised.
The largest change ofm in the whole region betweenp50
and 1 is found for the networks withz56. In fact, we find in
this case an increase inm of 2.13 to be compared with 1.4
and 1.07 in 1D and 2D rewired networks withz54.

For p51, our numerical procedure gives in all cases co
nective constantsm clearly lower than the mean connectivit
z. In fact, we foundm53.69, 5.73, and 3.70 (60.01) for
networks rewired from 1D lattices withz 5 4 and 6, and
from a 2D lattice (z54), respectively. The obtained value
for networks withz54 coincide within error bars, irrespec
tive of the starting 1D or 2D lattice, indicating that forp

FIG. 2. Linear-log plot of the average number of self-avoidi
walks un on small-world networks generated from 1D rings wi
connectivityz54. We plotun as a function of the path lengthn for
several rewiring probabilitiesp, as derived from numerical simula
tions. From top to bottom:p51, 0.3, 0.1, 0.03, and 0. Dotted line
are guides to the eye.
6-3
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51 the resulting rewired networks lost memory of the sta
ing regular lattice. However, them values obtained for simu
lated networks withp51 contrast with those expected fo
random networks, which coincide in each case with the
erage connectivityz, as explained above. This occurs b
cause our networks withp51 are not true~Poissonian! ran-
dom networks, since they still keep memory of the start
regular lattices@19#. This memory effect is mainly due to th
fact that one rewires only one end of each link, maintain
the other end on its original site. Hence, the connectiv
distribution found for our rewired networks withp51 does
not coincide with that given above in Eq.~3!. Such a differ-
ence with Poissonian random networks should be even st
ger for small-world networks generated in a way similar
ours, but leaving untouchedz/2 links per site, as those stud
ied in earlier works@7,21#.

To analyze the change ofm as a function ofp for a given
underlying lattice, we callDm5m2m0 , m0 being the con-
nective constant of the corresponding regular lattice. In F
4, we show the obtained dependence ofDm uponp for the
considered 1D and 2D networks in a log-log plot. In all thr
cases, we find thatDm can be fitted well by a power law
Dm;pc for p&0.01. For 1D networks, exponentc is found
to be 0.9860.03 ~for z54) and 0.9960.03 ~for z56). For
2D networks, we foundc50.9960.03. Thus, our results in
dicate a linear dependencem5m01ap for smallp, irrespec-
tive of the underlying lattice.

Therefore, the functional form for thep dependence o
Dm close top50 does not depend on the dimension of t
starting regular lattice. This constrasts with other proper
of small-world networks, which have been found to chan
asp1/d, d being the dimension of the underlying lattice. Th
happens, for example, for the average number of node
‘‘shell’’ n, which scales asp1/d @19#. Such a dependence

FIG. 3. Connective constantm as a function of the rewiring
probability p. Different symbols represent results obtained
small-world networks generated from 1D regular lattices with c
nectivitiesz54 ~squares! andz56 ~circles!, as well as from a 2D
square lattice~diamonds!. Dotted lines are guides to the eye. Err
bars are less than the symbol size. Results form obtained by means
of the analytical method described in Sec. IV are plotted as das
lines.
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related to the scaling of the characteristic length scale
small-world networks, namely, the average distance betw
the ends of shortcutsj, given byj5(pz)21/d @20#.

IV. ANALYTICAL APPROXIMATION

We now derive an approximate analytical expression t
allows us to calculateun in a small-world network, assuming
the sequence$un

0% for the underlying regular lattice to b
known @37,38#. For a given path lengthn, we obtain the
mean number of SAW’sun by considering all possible se
quences of unrewired and rewired links in small-world n
works. With this purpose, we calculate the probability
reaching a rewired link as a function of the walk length.
particular, we will obtain the conditional probability that th
i th link in a SAW is a rewired one, assuming that linki 21 is
an unrewired one (i .1).

We first note that in a regular lattice, the ratioci

5ui
0/ui 21

0 obviously depends oni. This ratioci measures the
average number of available links starting from the (i 21)th
site in a generic SAW on the underlying regular lattice, a
allows us to calculate the number of possible unrewired lin
in a SAW on a rewired network. Taking into account that t
fraction of unrewired connections in the whole rewired n
work is 12p, the mean numberqi of available unrewired
links going out from sitei 21 in a SAW isqi5ci(12p). On
the other hand, the mean number of rewired links going
from an arbitrary node reached by an unrewired link is giv
by ~see the Appendix!

wi5p~z2 1
2 !. ~9!

~Contrary toqi , the mean numberwi is independent ofi.!
Therefore, the conditional probability that linki (.1) is a
rewired one, assuming that linki 21 is an unrewired one, is
given by

-

ed

FIG. 4. Dependence upon the rewiring probabilityp of the
change in connective constant,Dm5m2m0, with respect to the
corresponding regular lattices. Symbols represent the same
works as in Fig. 3. Dashed lines were obtained from analyt
calculations by using Eq.~13!.
6-4
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p̄i[
wi

wi1qi
5

z8p

z8p1ci~12p!
, ~10!

with z85z21/2. For i 51, we takep̄15p. This probability
p̄i is shown in Fig. 5 for the three types of networks cons
ered here, for a rewiring probabilityp50.1.

Thus, the average number ofi-step SAW’s that do not
include rewired connections is

Ai5~12 p̄1!•••~12 p̄i !ui
0 , ~11!

and the number of those consisting ofi 21 unrewired links
and a rewired one in stepi is

Bi5~12 p̄1!•••~12 p̄i 21! p̄iui
0 . ~12!

Now we note that a rewired connection in stepi in a ~large!
small-world network ends on a random site of the netw
~most probably far away from the sites already visited in
same walk!. This means that in stepi 11, one begins mos
probably with a situation similar to that found in stepi 51.
Finally, the average number ofn-step SAW’s is given by

un5 (
i 11•••1 i j 5n

Bi 1
Bi 2

•••Bi j 21
Ai j

, ~13!

where the sum is extended to all possible combinations
indicesi 1 , . . . ,i j with sum equal ton, including null indices,
for which we haveB05A051. Each term in Eq.~13! repre-
sents a sequence of unrewired and rewired links, and thu
sum includes 2n terms. The SAW’s corresponding to the ge
eral term in the sum includej 21 rewired links~in step num-
ber i 1 ,i 11 i 2 ,i 11•••1 i j 21). As an example, Eq.~13!
gives, forn52, u25B21B1

21B1A11A2.

FIG. 5. Conditional probabilityp̄n that thenth step in a SAW be
a rewired link, assuming that linkn21 is an unrewired one, a
derived forp50.1 from the analytical procedure described in t

text. p̄n is presented as a function of stepn for small-world net-
works built up from 1D rings withz54 ~squares! and z56
~circles!, as well as from a 2D square lattice~diamonds!. Dotted
lines are guides to the eye.
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Note that the above equations, although rather accur
are not exact. There are two reasons for this: First, each r
ci is an average number of allowed links starting from a s
reached ini 21 steps, but the actual number of such allow
links depends on the particular site under consideration. S
ond, finite-size effects should appear, unless the consid
networks are large enough.

Values of connective constantsm derived from un ob-
tained with this procedure are presented in Figs. 3 and 4
function of the rewiring probabilityp ~dashed lines!. There
appears to be good agreement withm derived from numeri-
cal simulations~symbols! for p,0.2. For largerp, the con-
nective constants deduced from the analytical method
larger than those yielded by the simulations.~For z56 there
is a region aroundp50.3 where the analytical results ar
slightly lower than those found for the simulated network!

For p51 our analytical procedure givesm5z, as for ran-
dom networks. On the other hand, our numerical simulati
for small-world networks gave in all cases in the limitp
51 connective constantsm clearly lower than the mean con
nectivity z, as indicated above and shown in Fig. 3. Th
difference between both procedures is due to the abo
mentioned fact that simulated networks withp51 do not
have a Poissonian connectivity distribution, which is impl
itly assumed in the analytical method for this value ofp. As
a matter of fact, in this case we haveAi50 for i .0, Bi
50 for i .1, andB15z, giving in Eq. ~13! un5zn, as for
random networks@see Eq.~6!#. In this sense, our analytica
procedure to calculate the number of SAW’s gives a be
interpolation between regular lattices and random graphs

In the context of this analytical approach, it is natural
expect close top50 a linear dependence of the connecti
constantm on p, as found from our numerical simulation
~see Sec. III!, irrespective of the underlying lattice. By ex
panding the probabilityp̄i @Eq. ~10!# to first order inp, one
finds for i .1: p̄i5z8p/ci1O(p2). Introducing this expres-
sion for p̄i into Eqs.~11!–~13!, and keeping terms up to firs
order inp, we find

un5(
i 50

n

BiAn2 i ~p!1!, ~14!

with the corresponding linearized expressions forBi and
An2 i . This expression includes contributions of SAW’s co
taining zero~term An , for i 50) and one rewired links~all
other terms,i 51, . . . ,n). In this way, close top50 we find
for the derivativedm/dp the values 7.6 (d51,z54), 14.3
(d51,z56), and 6.3 (d52). Thus, it is clear that the func
tional dependence ofm upon p for p!1 does not change
with the dimension of the underlying lattice.

V. CONCLUSIONS

Self-avoiding walks provide us with an adequate tool
study the long-range characteristics of small-world networ
For large networks, the number of SAW’s increases asym
totically asun;mn, provided that one considers system siz
L@n. For small-world networks generated from a given la
6-5
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tice, the effective connectivitym ranges from the value of th
regular lattice tom5z for random graphs. For smallp this
effective connectivity follows a linear relationm5m01ap,
a being a constant dependent on the underlying lattice.

We have developed an analytical procedure to obtain
number of SAW’s in small-world networks. This method
based on calculating probabilities of finding rewired or u
rewired links in the walks, and gives results in good agr
ment with numerical simulations forp&0.2. The results of
both methods differ for largerp, since they assume in prac
tice different connectivity distributions. Our analytic
method gives in this respect a correct interpolation betw
regular lattices and random graphs. On the contrary, the
wiring ~simulated! process gives rise to non-Poissonian co
nectivity distributions, even for a rewiring probabilityp
51, yielding in this case networks with connective consta
m lower than the average connectivityz.

Both analytical calculations and simulations similar
those presented here can be useful to characterize other
of networks of current interest, such as scale-free netwo
whose properties are known to depend on the asymp
form of the connectivity distribution for large connectivitie
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APPENDIX: DERIVATION OF CONDITIONAL
PROBABILITIES

Here we calculate a conditional probability related to t
number of possible connections starting from a generic n
in a SAW, and necessary to derive Eq.~9! in our analytical
approach in Sec. IV. In particular, we will obtain the avera
number of possible rewired links going out from a gene
nodeX ~so called for definiteness!, assuming that this nod
was reached in a SAW through an unrewired link in stepn.
Here we mean by possible links all those connections
are available for stepn11 in a SAW ~leading to nodes no
previously visited in the same walk!.

In a rewired network, the links with one end on nodeX
can be classified for our present purpose into three type

~1! Links which were not rewired and remain as in t
original lattice. The probability distribution for the numberr
of these connections is given by

P1~r !5S z

r D ~12p!rpz2r , r 50, . . . ,z. ~A1!

~2! Rewired links for which the reference nodeX was not
changed. Following the above notation, there arez2r re-
wired links, from whichs keeps one end on siteX. The
probability distribution fors is

P2~s!5S z2r

s D S 1

2D z2r

, s50, . . . ,z2r . ~A2!
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~3! New ~rewired! links arriving at siteX. The distribution
of the numberv of these connections is~for large system size
N)

P3~v !5
1

v!
~ tz!ve2zt, v>0, ~A3!

with t5p/2.
Thus, given a site withr unrewired connections, the num

ber of rewired links isx5s1v, wheres depends onr andv
is independent ofr. The probability distribution forx is

Q2
(r )~x!5 (

s50

smax

P2~s!P3~x2s!, ~A4!

with smax5min(z2r,x). Then, we have

Q2
(r )~x!5S 1

2D z2r

e2zt(
s50

smax S z2r

s D 1

~x2s!!
~ tz!x2s.

~A5!

Hence, the probability distribution for the number of ou
going rewired links~assuming that the incoming link was a
unrewired one! is

Qout~x!5(
r 51

z

Qin~r !Q2
(r )~x!, ~A6!

whereQin(r ) is the probability of reaching a node havingr
unrewired links:

Qin~r !5
r

z S z

r D ~12p!r 21pz2r . ~A7!

@Qin(r ) is given, apart from a normalization constant, by t
productrP1(r ).#

Finally, the mean number of outgoing rewired links@cal-
culated with the probability distributionQout(x)] is

^x&5 (
x51

`

xQout~x!. ~A8!

Introducing expression~A6! into Eq. ~A8!, and after a
straightforward but somewhat lengthy algebra, one finds
mean value

^x&5p~z2 1
2 !. ~A9!

This average valuêx& is calledwi in the main text, and the
last result is Eq.~9! there.
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Boston, 1993!.

@40# D.S. Gaunt and A.J. Guttmann, inPhase Transitions and Criti-
cal Phenomena, edited by C. Domb and M.S. Green~Aca-
demic Press, London, 1974!, Vol. 3.

@41# A.J. Guttmann, inPhase Transitions and Critical Phenomen,
edited by C. Domb and J.L. Lebowitz~Academic Press, Lon-
don, 1989!, Vol. 13.

@42# D. Stauffer and A. Aharony,Introduction to Percolation
Theory, 2nd ed.~Taylor & Francis, London, 1992!.
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